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Abstract The relativistic dynamics of a chxged paaicle when it is interacting with its own 
electromagnetic field i s  analysed. The effect of the reaction force is relatively small but it is 
signifcant in the energy balance between the field and partide. It is found that a pulse in the 
radiation field is formed when the initial conditions simulate the neation of a pkicnicle. 

1. Introduction 

Classical theory has recently been amended, improving it to the point where the differences 
with quantum theory, in,many cases, become marginal. The basic idea is to incorporate the 
uncertainty principle into classical theory, which is done by making it answer the following 
question: given the initial probability distribution Po(T) of finding a particle at a certain 
position and the probability distribution &(U) of having certain momentum (proper velocity 
or velocity for short), what is the probability distribution P ( T ,  t )  at some later time t? The 
uncertainly principle is incorporated by assuming that Po(T) and Qo(u) are mutually related, 
and this relationship is taken from quantum theory. As a result, excellent agreement with 
quantum theory is achieved on various levels of scale. From non-relativistic scattering 
problems [l, 21 to the relativistic dynamics of particle in the electromagnetic (EM) field (for 
both scalar [3] and spin-; particles [4]) and the description of spin [51 and spectroscopy [61, 
classical theory gives virtually the same answer as quantum theory. Of course, there are 
differences but they are of no fundamental importance. Based on these findings an attempt 
was made to reformulate one of the most difficult problems in physics, the radiation reaction 
force problem [7]. The basic idea behind the new formulation of this force is to note that 
the probability distribution P ( r ,  t )  acts as the charge density and, as such, it also interacts 
with itself. Why should the probability distribution also act as the charge density? This is 
easily explained by noting that if a particle is represented by its probability distribution then 
the~wl field produced by it (only if the particle is charged) manifests itself only through its 
average value. Crudely speaking, this means that, say, the scalar potential of a particle is 
given by the integral over the product ofthe probability P ( T ,  t )  d3r of finding the particle 
in a small volume element around certain position T, its charge e, and the retarded Green 
function connecting this volume element a d  the observation point. However, this is exactly 
the field produced by P ( T ,  t )  acting as the charge density. The only assumption we make is 
that P(r, t )  also interacts with itself, the idea which was used in formulating the radiation 
reaction force [7]. 

Based on this formulation of the classical radiation reaction force one can study 
processes where it plays a significant role. There is a whole range of them, e.g. spontaneous 
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decay; however, we will consider one of the simplest: the radiation pattern of a free particle. 
Although one of the simplest problems, its solution requires, as will be shown, considerable 
effort. The idea is the following. The free particle, as mentioned, is represented by a 
probability distribution in coordinate and momentum space. These quantities define the 
charge and current densities at any subsequent time, and they are the source of the EM 
field. This field, in turn, interacts with the time evolution of the probability distribution by 
affecting the motion of the individual trajectory. The purpose of the paper is to analyse this 
self-interaction and see whether the radiation field is created as the end product. 

It turns out that one of the trickiest problems is choosing the proper initial conditions 
for the probability distributions. ’ h o  types of initial condition will be considered. In the 
first, one assumes that, prior to the initial moment, the particle was bound and then set free. 
In the second, it is assumed that, prior to the initial moment, the probability density (and 
likewise the current) is zero. The latter initial condition is taken from relativistic quantum 
theory and describes the creation of a particle, e.g. the creation of an electron in beta decay. 
Radiation by electron in beta decay has been treated classically [8] by assuming that it 
is produced by the sudden change in the electron’s velocity, from zero to a certain final 
value. In this paper the same problem is solved as part of a broader analysis of radiation 
in the dynamics of free particles. Although classical theory is used, the present approach 
differs in many aspects from more conventional ones, e.g. the radiation reaction force is 
taken into account. This is the reason why comparison between the two approaches is not 
entirely legitimate. In the more conventional treatment, the electron is treated as a point- 
like charge, with a well defined velocity vector. The radiation pattern is then analysed 
with respect to this vector. In the approach here radiation is produced by the probability 
density and probability current and the features of the radiation field reflect the properties 
of these sources. Thus for spherically symmetric probability distributions the radiation field 
is produced without the magnetic component of the EM field. 

The properties of the radiation field are analysed for spin-0 particles. The ‘structure’ 
of spin-; particles is more complicated, involving both the probability distribution and the 
circulating probability current [5]. The radiation field for this system is expected to be 
more complicated than for spin-0 particles and needs separate discussion. This would be 
a real test of ability of the classical theory to describe the properties of the radiation field 
produced by free particles. 

2. The theory 

The relativistic classical equation which describes the motion of a particle when the radiation 
reaction force is included can be easily written down once the model, described in section 1, 
is assumed. The probability distribution P ( r ,  xg) and, likewise, the probability current 
j ( r ,  xg) are represented by a bunch of trajectories the initial conditions of which are taken 
randomly from the initial distributions in the coordinate and momentum of the particle. At 
each instant in time the probability density and probability current produce the EM field, 
and this field interacts through the Lorentz force with each trajectory. This self-interacting 
set of equations can be written as [7] 

where K is some external force acting on the particle. For a free particle it is zero; this 
case will be assumed in further discussion. m is the mass of the particle, K is its appropriate 
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Compton's wavenumber (K = mc/h), and a! is the fine-structure constant. Equation (1) is 
obtained after the coordinates are scaled with respect to K ,  so when we write r this means 
K r ,  and s means SK (s is the proper time). In these scaled coordinates, and when the charge 
e is taken out as the factor from the four-potential, the radiation reaction force is 

where U = d r j d s  and 

d3rod3u0 p(r0 ,  u&(x,"') 

B = d3ro d3uo p ( r 0 ,  uo)(R/R) x E ( $ ) .  s 
Both E and B in these units are dimensionless. The field E is 

[A+ R x { A  x [zi(l+ U*) - u(uiL)])] 
R3 

E($) = - 

(3) 

(4) 

where 

A = R , I ~ G -  R ~ .  (5) 

The dot designates the derivative with respect to s. The coordinate R is defined by 
R = r - rrouo(xrt), where rrouo.,(x~') means the coordinate of the particle at the retarded 
time if its initial conditions were ro and UO. The retarded time is defined by the equation 

x r  = xo - [r - rToao(xr)l (6) 

where xo stands for KXO = Kct. The velocity U and its derivative zi in (4) are evaluated at 

pO(r0. uo) is the initial probability distribution in the phase space and it is given as a 
product Po(ro)Qo(q), where PO(TO) is the initial probability density of finding a particle 
at the position ro and Qo(u0) is the initial probability density of finding a particle with the 
velocity UO. For any later time XO,  the phase space distribution p ( r ,  U; xo) is not product 
separable. In our analysis one of the initial distributions will be taken to be arbitrary but the 
others will be determined from quantum theory. In the non-relativistic theory the relationship 
between the two is easily obtained; however, in relativistic theory this relationship is not 
straightforward. First, there is no unique generalization of the non-relativistic~.quatum 
theory in the relativistic domain. The choice is between the Klein-Gordon (KG) or the 
Dirac equations. For the KG equation, which will be assumed in this paper, the probability 
density is defined as 

xo = x r t .  

P ( r , x o )  = -1m $*- . II ::I (7) 

A brief note concerning this quantity is appropriate. In the usual interpretation (7) is defined 
as the charge density; however, we will regard it as the probability density. 

If we write the following equation for the time evolution of the wavefunction 
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where only the positive energy solutions are considered, then at no = 0 the distribution is 
191 

PO(?-) = d3u d3u' (eu + eu~)A(u)A(u')eir'"-"') (9) s 
where e, =~m and A(&) is the amplitude which is obtained from the initial probability 
distribution. In general A(u) is difficult to find, given Po(?-) and the initial probability 
current Jo(r), so we will adopt a trial and error procedure. As it turns out, if we want 
Po(T) to represent the Gaussian distribution, of the form 

-9/2 (10) PO(?-) = e 

then 

which differs from the non-relativistic relationship in the factor (1 + u ~ ) - ' / ~ .  Given this 
relationship &(U) is 

Q o ~ )  = Ne - a 2 u 1 / J T 2  (12) 

d3r PO(?-) = 1 = ( 2 ~ ) ~  d3ueuA2(u). (13) 

where the normalization factor N is obtained from 

s s 
Solving equation (1) is very difficult, one of the major difficulties being the calculation 

of the retarded time x r ' .  If the effect of the retarded time is neglected the problems are 
still great but manageable; however, this approximation applies only to the non-relativistic 
case. 

Equation (1) is, in fact, a set of equations, where the coupling comes from the integrals 
(3), since they require knowledge of all trajectories (through the probability density and 
the probability current), albeit, at some earlier time x r ' .  Therefore, the way to solve (1) is 
to choose a set of random initial conditions from the distributions P&) and &(U), and 
start integrating the appropriate equations of motion. If N trajectories were chosen then 
this would mean 6N differential equations need to be solved. At each instant of time the 
probability density and current are calculated, from which the EM field is obtained. The EM 
field, in turn, interacts through the Lorentz force with each trajectory, with a certain delay, 
due to its finite speed of travel. 

The major obstacle, as we have already mentioned, is how to deal with the retarded 
time efficiently. One way is described here but it may not be the only possible one. We 
start from the four-potential written in its most primitive version 

U@ 
(14) A @ = 2 e r  dr:,/d3r'd3u6[(no-no) 1 2  -(?--?-')*I- 

-m 

and, if the delta function is replaced by its Fourier transform, we obtain 
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The analysis is greatly simplified for a spherically symmetric distribution p(r ,  U, xo). The 
probability density P(r. XO) is then spherically symmetric and the current j(r. xo) has only 
a radial component. The p. = 0 component of the potential A' (the scalar potential) is then 

(we have used the identity uo = m) and the integration over the angles of T' can be 
done immediately, with the result 

m I) sin(2wrr') 
W 

A 0 (r.xo) = -. 4e dxh Am dr'r'P(r', xh) dw cos[(xo - x;)' - rz - r 1 
r -CO 

The integral over w is non-zero and equal to ir/2 if [ l o ]  

2 I2 2rr' > ~(xo - x;)' - r - r I 

which gives the limits on x;l 

xo - r - r' e x; c xo - Ir - 1'1. 

Furthermore, by definition 

and. if we define the radial distribution by 

p(r ,  xo) = 4 7 r ~ ( r ,  xo)? 

then the scalar potential is finally 

Similarly we derive the vector components of A" (the vector potential). It is given by 

where J has only a radial component which can be written as 

J = J?  

where i is the unit vector. The integral over the angles of T' are now easily evaluated, and 
give for the vector potential 

1 -  sin(2wrr') 
2wrr' 
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The range of x;I for which the integral over w is non-zero is similar as that in the derivation 
of the scalar potential. The detailed discussion is omitted, and the final result for A is 

where 

(27) z r '  f ( x 0 ,  xh, r, r') = (xg  - x$ - r - r . 
We used the definition of the radial current density, j = 4irJr2. 

 from the explicit form of the four-potential we can derive the Lorentz force. The 
magnetic component of the EM field is zero because A has only a radial component, whilst 
the electric component is given by 

E = -VAO - aA/axo (28) 

or more explicitly 

where 

g(x0, x;I, r, r') = r'p(rYx6) + (xo - xh) j (r ' ,  .;I). (30) 

It can be easily verified that, in the limit r + 0, the electric component E goes to zero, as 
it should by the consideration of symmetry. 

3. The initial conditions 

One of the most difficult problems which needs to be addressed now is: how do we decide 
on the initial conditions, i.e. about Po(r)  and Qo(u)? Without the radiation reaction force 
included the answer is simple: any reasonable choice of PO(?-) at, say, xo = 0 is valid 
and Qo(u) is determined as discussed in section 2. The problem arises when the radiation 
reaction force is included because there is, even in principle, no way of controlling it, 
i.e. being able to turn it on in the prescribed manner or at the prescribed time. As a 
consequence the initial condition at some fixed time xo has no meaning since A' depends 
on the distribution and the current prior to that moment, which means that the time evolution 
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of the probability distribution also depends on its values prior to that moment. Therefore, it 
is not enough to know the probability distribution at some initial moment XO, we also need 
to know it at all times before that. 

A possible choice for the initial conditions is to assume that the particle is bound until 
the initial instant xo = 0, and then it is set free (we will refer to this as a type I initial 
condition). In such a case, prior to that instant the probability distribution is stationary 
and the probability current is zero, which is always satisfied if the particle was in the 
ground state, even when the radiation reaction force is included. The excited states, in 
general, are not stationary when the radiation reaction force is included, the resulting effect 
being spontaneous decay. It is obvious that this initial condition depends on the choice of 
interaction which confines the particle but for modelling purpose one can assume a certain 
distribution Po(T) and not worry about the potential which, together with the radiation 
reaction force, produces it. In this paper we will discuss an initial condition of type IlO), 
whilst in the momentum space it is given by (12). We do not discuss the form of potential 
which produces this stationary probability distribution. 

There are other ways of choosing initial conditions but one should make sure they 
are physically reasonable. For example, in non-relativistic quantum theory, and similarly 
in its relativistic generalization, the initial condition is different from the one previously 
mentioned. For the sake of completeness we will discuss it briefly using the example of a 
free particle, with and without the radiation reaction force included. We will refer to it as 
a type II initial condition. 

In quantum theory the time evolution of the wavefunction is conveniently represented 
in the form [ I l l  

@(v, X O )  = / d3r’C(v - T‘, xo)@(r’ ,  0) (31) 

where the initial condition is explicitly represented by the function in the integral. This 
form is quite general and differs only in the details when one seeks a solution of the KG 
or the Dirac equation (or the non-relativistic Schrodinger equation). The Green function, 
or the propagator G(T - r’, xo - x;), is the solution of the relativistic quantum equation. 
For example, in the case of the KG equation, when no radiation reaction is included, this 
equation is of the form (in the appropriate units) 

The initial wavefunction @(T, 0) can be a mixture of positive and negative frequency 
states and the choice of the Green function is such that for xo > 0 only the positive ones are 

~propagated, whilst for xo < 0 only the negative ones [I l l .  Therefore, if the initial state is 
chosen with only the positive frequency states (this is always possible, as shown on various 
occasions), then the wavefunction (31) for xo < 0 is zero, the same as in non-relativistic 
quantum theory. This is not a problem if the history of the wavefunction is immaterial 
as in the case when no radiation reaction is included. However, if the history is relevant 
then the time evolution of the wavefunction with this initial condition suffers from serious 
drawbacks, e.g. the law of conservation of the probability is not satisfied. We will come 
back to this point shortly. 

As mentioned the problems arise when the radiation reaction force is included. The 
relativistic quantum equation for the particle is now coupled with the equations for the EM 
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field (the four-potential), and the set, when the KG type of equation is considered, is (in the 
appropriate units) 

where the four-current j” for the scalar particle is 

It should be noted that if we go over to QED the coupling of the EM field (i.e. photons) 
to the particle is represented by the same type of equation as (33) (with the Kc equation 
replaced by Dirac’s) except that it is the set of equations for the quantized fields [12]. 

We are now confronted with a problem of how to solve the set (33) and, in particular, 
how to choose the initial conditions. One point is certain: the set is no longer linear in 
the wavefunction $ and, therefore, many of the techniques for solving linear equations, in 
particular the perturbation method, should be used with the utmost caution [7]. However, 
we are not going to discuss this further but move on to analyse the problem of the initial 
conditions. 

If the solution of (33) is known, and $ is written in the form (31). then the four-potential 
A” is calculated as discussed in the previous section. However, the initial conditions which 
we now use reflect the properties of the Green function. For example, if solution (31) 
involves only the positive frequency states then the four-potential A’ is zero for xo c 0. 
The initial condition appears to be unrealistic, as argued before; however, it approximately 
represents the creation of a particle, e.g. the electron in beta decay. In this process a particle 
of the opposite charge is created (proton) but that would involve discussion of multi-particle 
systems, which we are not currently considering. Later we will discuss solutions based on 
this initial condition; however, we will neglect the fact that a particle of opposite charge is 
created. 

4. Numerical method for solving the equations of motion 

The basic equations of motion which we need to solve in our analysis are given by (l), 
where, for a free particle, the external force K is zero. The set ( I )  is still not in final form, 
because it should be given in the real time xo rather than the proper time s. If we use the 
transformation 

d v + w x ( w v )  
-U = 
ds ( I  - v2)2 

(35) 

where the dot now designates the derivative with respect to the real time XO, and v is the 
velocity in the real time, it can be shown that 

i: = or(1 - V*)[F,,, - v(wF,,,,)] (36) 
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replaces the set ( I )  but now in the real time XO. The reaction force is given by (2), where 
the magnetic component is zero and the electric component is given by (29). The set 
of equations (36) is very complicated, and it is a set because on the right-hand side the 
force is given in terms of the probability distribution and the probability  current,^ which 
can only be calculated if all the trajectories are calculated at the same time. In this way 
we are able to calculate the Lorentz force by first sampling all the trajectories in order to 
produce the distribution and the current, and then calculate the field from which the force 
on particular trajectory is calculated. how ever,^ all the trajectories cannot be taken into 
account (there are an infinite number of them) and therefore we must work with a finite set 
of them, taken randomly from the initial probability distributions PO(?-) and Qo(u). This 
will inevitably introduce errors in the calculations, in the form of fluctuations of random 
numbers. The fluctuations do not represent a problem, and one can always improve on this 
point if larger numbers of trajectories are taken into account. HoweveCone particularly 
unpleasant problem arises which needs to be mentioned. Very often in the calculations there 
is cancellation of large numbers in order to produce a result which is small. This is always 
an unpleasant numerical problem but particularly so whe,n random numbers are involved. 
Namely, fluctuations of random numbers do not decrease rapidly with the increasing number 
of trajectories, in faci they go to zero as the inverse of the square root of the number of 
the trajectories. Therefore if this problem is encountered, as it is in our analysis, particular 
care should be taken that the influence of these numerical instabilities is made as small as 
possible. In several examples we will obtain an EM field with large fluctuations when they 
should be zero. This is exactly the problem which we mentioned; however, the influence 
of the results on the time evolution is negligible. Overall, where the field is substantial, 
numerical instabilities of this kind are small. 

Fluctuations in random numbers have the greatest effect on the probability distribution 
and current. However, the field, because the integrals in (29) smooth out these fluctuations, 
is relatively well behaved and therefore interpolations are possible. This is particularly 
important because the Lorentz force is not simply related to the probability density and 
current. In fact, we must keep track of all the probability distributions and the probability 
currents from the past, and when the integrals in (29) are calculated it is necessary to take 
all of them into account. In practice the time steps were conveniently chosen, and at each 
one of them both these quantities were stored at certain space intervals. The integrals were 
calculated by the trapezoidal rule, but were required when interpolation was necessary. 
This was particularly the case when the solution was propagated between two time steps 
(the numerical algorithm for solving sets of differential equations, developed by Shampine 
and Gordon [13], was used). Various checks were made in order to ensure stability of the 
solutions, and the examples which we present were all done with these checks. 

Summarizing: the procedure for solving set (36) is as follows'. At time xg = 0 a set 
of 6N randomly chosen initial conditions is taken for the radial coordinate and the radial 
proper velocity (from the distributions discussed previously) and the appropriate spherical 
angles (uniformly distributed within their domain of definition) of these two parameters. 
The time step is fixed and propagation within this time step started. At each instant the 
radial probability distribution and the radial current are calculated using the usual sampling 
method [I]. From these results, and those of previous time steps, the integrals in (29) are 
calculated for the spatial points where the particular trajectory is. At this point interpolation 
is necessary, which was done by splines. In this way the force on the right-hand side of 
(36) was calculated, and hence propagation of the solution achieved. 
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5.  Examples 

Various examples will be discussed in this section, covering the most typical cases. Two 
limiting ones are of interest, and they are distinguished according to the width of the initial 
probability distributions (it should be recalled that the coordinates are scaled with respect to 
the Compton wavelength). Those with widths greater than 1 (a >> I in (IO), which we use 
in this paper) fall into the non-relativistic domain and the ones with widths much less than 
1 (a << 1 in (10)) fall into the relativistic domain. Their rime evolution is entirely different, 
as can be seen in figure 1, where the initial probability distribution po(r)  (full curve) for 
two values of a is shown after a certain time interval (step-like line). In their dynamics no 
radiation reaction force is included. One typical feature of the probability distributions which 
was mentioned in the previous section should be noted the distributions are not smooth, 
instead they are given by a set of points which fluctuate around some average value. This 
arises as a result of using a finite number of randomly chosen initial conditions. For each 
value of the width we show two types of distribution: the three-dimensional distribution 
in coordinates P(r,  I) and the distribution in the radial coordinate p(r ,  t )  = rzP(r ,  t ) .  The 
fluctuations of P(r, t )  for small r are much larger than those of p(r ,  t ) .  and therefore it is 
more convenient to work in spherical coordinates. From now on when we talk about the 
probability distribution in the coordinates we mean the distribution of spherical angles and 
the radial coordinate. 

;P '::Li 60 6 O b  

X 30 2 
30 

0 
0.00 0.03 0.06 0.08 0.00 0.M 0.06 0.09 

r , 
0.020 0.004 

0.015 
0 . W  

- 2 -;p 0.010 
I 

0.003 B D 

0.005 

0.wo 0.wo 
0 200 0 200 400 WO WO 1000 

r 

Figure 1. Typical time evolution of n m w  (n = 0.01) and broad (n = 100) probability 
distributions without the radiation reaction force included. The dintriburions at 41 = 0 are 
shown by a full curve and, after a cemin time. they are shown by a step-like line. Two 
types of probability distribution are shown: the thee-dimensional P(r ,  XII) nnd the radial 
p ( r , x o )  =rZp(r,xi i ) .  

Figure 1 shows two entirely different time behaviours of the probability distributions, 
dependin:: on the choice of a .  In the non-relativistic limit (a = 100) the distribution only 
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spreads, i.e. its width increases in time. On the other hand, in the relativistic limit (a = 0.01) 
a radial probability ‘pulse’ is produced which travels at nearly the speed of light, and it is 
relatively stable. Because of this ‘pulse’ one can associate with it an average momentum 
and energy, the latter being given by 

E-ianicle = d’r d3u p ( ~ ,  U, X O ) ~ .  (37) s 
The factor mc2 is omitted in the definition of Ewicie. 

When the radiation reaction force is included in the dynamics of the probability 
distribution we expect to notice a change in its properties and .in the pattern of the 
electromagnetic field. We will consider two different initial conditions for the probability 
distributions: types I and II described in section 3. 

When the type I initial condition is assumed the dynamics of the probability distributions 
in the non-relativistic case (a >> 1) is expected to be simple. The basis for this conclusion 
is straightforward. The spread of velocities in the initial distribution is non-relativistic, 
and hence the effect of retardation is negligible. Indeed this is the case and, in the first 
instant. this effect can be neglected. However, the dynamics of the probability distribution 
is far from simple. This limit was discussed quite extensively [7] and it was found that 
on a long time scale the initial probability distribution does not stay centred around the 
origin, but a ‘pulse’ is produced, as shown in figure 2 for an extreme case when a = IO5. 
After xo = 10” units of time the initial distribution (full curve) has moved away from the 
origin (steplike line), with a well defined front which is moving with a certain velocity. 
The consequences of this finding are far reaching [7], but for our discussion they are not of 
immediate importance. Far more interesting, from the point of the EM field, is the relativistic 
case, i.e. the dynamics of the narrow initial probability distributions. 

A typical example of the time evolution of a narrow probability distribution is shown in 
figure 3: The broken curve is the distribution itself and its scale is in convenient units so that 
it can be related to the electric field Er (full curve), which has only the radial component. 
The electric field is in dimensionless units, as defined in section 2.. The width of the initial 
distribution is a = 0.01, and the times at which the sequence,of figures is made is indicated 

Three characteristic features of the electric field are noted. For large r ,  outside the 
probability distribution, the electric field is the ordinary Coulomb-type field of a point-like 
charge e. Ifs functional dependence on r is r-z. Inside the distribution the field gradually 
goes to zero and. in the region of small r, again outside the distribution, it is zero or it 
oscillates around zero. These oscillations are artificial, and they are the result of numerical 
instabilities in the calculation with random numbers. The field for small r is the result of 
cancellation of two components in (28), one from the vector potential and the other from the 
scalar potential. Each component is large and, therefore, when they cancel each other out 
numerical instabilities are expected, which is serious when random numbers are involved. 
In the previous section we discussed this point in detail and, in order to test that this is 
indeed the case, the calculation was repeated for a smaller number of initial conditions. 
The results in figure 3 were obtained with 5000 sets of initial conditions (30000 coupled 
equations), and in figure 4 a comparison with the probability distribution and the electric 
field when 1000 sets (broken line) of initial conditions is chosen is made. The results 
are nearly identical, save for the random number fluctuations. However, oscillations in 
the electric field for small r are much more enhanced for a smaller number of the initial 
conditions. It is, therefore. expected that as the number of the initial conditions is increased 

in figure 3. . 

the electric field would indeed go to zero. 
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F i u m  2. Time evolution (step-like line) of a very broad initial probability distribution (full 
curve) when the radiation reaction force is included. The initial condition is of type 1. 

Very narrow probability distributions disintegrate quickly, producing the radial ‘pulse’ 
which travels at nearly the speed of light. The electric field follows the motion of the 
distribution and eventually disappears, as shown in figure 3. The energy of the field is, 
however, converted into the energy of the particle so that the total energy of the system is 
constant. The energy of the particle has already been defined in (37) (it is given in the units 
of mc2). The energy of the field, on the other hand, is (in the same units) 

where we have used parametrization of the field defined in section 2. The total energy of 
the system is therefore 

and it is conserved, which can be shown by proving 

a 
axo 
- Etor = 0. 

This is indeed true provided p(r .  U, s) satisfies the relativistic Liouville equation 
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Figure 3. Time evolution of the electric field E,  for a narrow initial probability distribution, 
with type i initial conditions. The probability distribution (brake" curve and not to scale) is 
shown for comparison. Oscillations in the field me due to numerical instabilities. 

where the indices of the nabla operator mean gradients with respect to the T and U variables, 
respectively. The force F is given by (I), and in our case F = aF,,,,. 

Figure 5 shows the calculation of the energy of the particle and the field. The energy 
of the field goes to zero, or at least it appears so. Likewise the energy of the particle 
increases, however, by only a small fraction of its entire energy. The effect of the field 
on the dynamics of the particle is, therefore, relatively small. The total energy E,,, of the 
system is also shown (broken curve), and it is constant. The small deviation of Eta, from 
constancy for small xo is the result of numerical instabilities. 

A calculation with a narrower initial probability distribution (a = 0.001) was done and 
the results are also shown in figure 5. The effect of the field on the energy of the particle 
is larger in absolute magnitude, compared with the broader initial distribution (a = 0.01); 
however, in relative magnitude the effect is nearly the same. 

The initial condition which we analysed does not produce the EM field which has the 
property of a radiation field. In other words, the maximum of the field goes to zero 
faster than r-' as time progresses and, hence, the total field energy goes to zero. Entirely 
different properties for the EM field are obtained for the type 11 initial conditions, i.e. when 
the probability distribution is zero for x g  c 0. This condition implies that, for xg c 0, the 
field is also zero and, at xa = 0, it is created near the origin, in the vicinity of p&). The 
field will tend to fill Up the space, and this disturbance propagates at the speed of light. 
However, there is always a region of space, beyond approximately r > xg, where the field 
is zero. This qualitative description of the field is confirmed in the calculations. For a 
narrow initial probability distribution (a  = 0.01) the results for the electric field are shown 
in figure 6 (full curve), where the probability distribution is also shown (broken curve) for 
comparison. 
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Figure 4. Probability distribution p(r, xo) and the elecvic field E, as a function of the number of 
nndom initial conditions for tnjectories. Increasing the sets of initial conditions from 1000 sets 
(broken curve) to 5000 (broken curve) reduces the amplitude of the oscillations in the electric 
field for small r. 

The electric field starts from zero, acquires a large amplitude in the vicinity of the origin 
and then travels in the form of a pulse with its amplitude slowly decaying with time. This 
feature of the field is a result of the dynamic properties of the probability distribution which 
also travels at nearly the speed of light, in the form of a ‘pulse’ going radially. Since 
the velocity of the ‘pulses’ is nearly the same the entire field will be confined within the 
probability distribution and, hence, their mutual interaction will be strong. Eventually, part 
of the field will overtake the probability distribution but that may take a very long time 
when the latter is very narrow. In particular we note that no Coulomb tail was formed, at 
least within the time interval in figure 6, which is expected to happen. 

Calculation of the energy of the field and the particle reveals interesting details. Figure 7 
shows that the energy of the field rises from zero, as it should, and then acquires a constant 
value. The implication is that Er has the properties of the radiation field, because the energy 
of the field can only be constant if its maximal amplitude does not go to zero faster than 
r - ’ .  Therefore, in the process of creating a particle, which the assumed initial condition 
describes, radiation is produced but not of the type to which we are accustomed. This 
radiation field does not have a magnetic component. 

On the other hand, the energy of the particle is constantly rising, and so is the total 
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Figure 6. Time evolution of the electric tidd E, for a namw initial probability distribution, 
with type I1 initio1 conditions. The probobiliry distribution (broken curve and not to scale) is 
shown for comparison. 
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energy of the system. Energy conservation no longer holds, because the chosen initial 
condition does not conserve this quantity: the energy of the field prior to xo = 0 is zero, 
and after that it acquires a certain value. The increase in the energy of the particle is not 
indefinite, and it will eventually stop. However, this happens after the time when part of 
the electric field overtakes the probability distribution, as will be shown shortly. This may 
take a long time for a narrow probability distribution. The increase in the particle's energy 
also indicates that the interaction between the field and particle is strong. 

At another extreme are the broad distributions. The time evolution of the electric field 
for one of these examples is shown in figure 8, where a = 10. The electric field (full 
curve) splits into two parts: one which stays around the probability distribution and the 
other which travels as a pulse leaving behind the trail of the Coulomb field. This also 
happens in the case of narrow probability distributions, like the one discussed previously, 
but the process takes much longer because the two parts of the field stay together for a 
long time. Eventually the pulse goes to infinity while the rest of the field evolves in time 
in the same way as the probability distribution with the type I initial condition. The pulse 
has all the properties of the radiation~field, meaning that its total energy is constant (only 
approximately because the pulse cannot be totally isolated from the rest of the field). The 
energy of the field, therefore, consists, of two parts: one coming from the Coulomb field 
and the other from the radiation field. The result is that, in the infinite time limit, the total 
energy of the field reaches a constant value. Its typical time evolution, for the example in 
figure 8, is shown in figure 9; however, the constant limit at infinite time is not reached. 
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Figure 8. Time evolution of the electric field E, for P broad initial probability distribution, with 
type I1 initial conditions. The probability distribution (braken curve and not 10 scale) is shown 
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a=1o 

This is the answer to the total energy problem of the previous example. The increase in 
the total energy, shown in figure 7, continues until the time when the field splits into two 
distinct parts and, obviously this may take a very long time for very narrow probability 
distributions. 

3 

Figure 9. Time dependence of the energy of the field Ehcid for B broad initial probability 
distiibution of type 11. 
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6. Discussion 

The pattern of the EM field, which is produced in the self-interaction of a charged particle, 
was analysed. Only the spherical probability distributions were considered, in which case 
the magnetic component of the EM field is missing. Two types of initial condition were 
analysed, each one of them describing a different situation. However, these initial conditions 
are approximate because some important ingredients are missing. One of these takes 
into account the presence of another particle, which must inevitably be there if the initial 
conditions are to be realistic. For example, in type I initial conditions the charged particle 
is bound prior to xg = 0 and for that another particle is needed to bind it. Also one needs to 
know the mechanism by which the particle is set free. On the other hand, in type II initial 
conditions the probability density is zero prior to xo = 0 and one needs another particle to 
satisfy, e.g., the conservation of charge. 

Despite these objections the model is not entirely without physical meaning. At least 
it reveals the dynamics of these probability distributions and, in particular the properties 
of the mi field. Without any detailed analysis one would expect that, with type I initial 
conditions, the electric field would very much resemble the Coulomb field of the distribution 
of charge. The dynamics of the probability distribution determines the pattern of the field, 
which, for a narrow initial distribution, is the field of a charged spherical strip, with a radius 
which increases with time. This picture is confirmed in the calculations. However, despite 
this simple result the radiation reaction force is essential to the dynamics of the particle. 
Without it the conservation of energy law would be violated. At xg = 0 the energy of the 
field has a certain value, whilst at a much later time it is virtually zero. The energy of the 
field is converted into the energy of particle through the radiation reaction force. 

Type I1 initial conditions are much more interesting. The radiation field is found and 
its exact interaction with the particle depends on the width of its probability distribution. 
In all cases, however, the EM field splits into two components: the radiation-type field 
and the Coulomb-type field. The latter is bound to the probability distribution, whilst the 
radiation-type field propagates at the speed of light, in the form of a localized pulse, its 
total energy being constant. The two types of field are indistinguishable for a long time 
if the initial probability distribution is very narrow. Eventually they separate because they 
propagate at different velocities and have different amplitudes for large r .  The interesting 
point about this radiation field is that it does not have a magnetic component, and yet it 
carries momentum. This can be tested by placing a charged particle in this field, in which 
case the particle would acquire momentum in the radial direction. 

In the analysis we have considered spherical probability distributions and, hence, the 
effect of the radiation reaction force is relatively small but important. The picture may 
drastically change for particles with spin-4. It has been shown that the 'structure' of these 
particles [5] is more complicated than the one which we have considered for spin-0 particles. 
In the latter one works only with probability distributions in the initial conditions: however, 
for spin-4 particles one deals with both the probability density and current. The current 
circulates round the core of the charge and produces a magnetic dipole which interacts with 
the motion of the probability density. It is expected that the effect of coupling these two 
motions may produce much more pronounced dynamics: however, this is the subject of a 
more elaborate analysis which will be done separately. 

In conclusion one can say that the role of the radiation reaction force is important in 
the dynamics of particles and, beside objections about the initial conditions, there is another 
one: what is the relevance of these studies when it is known that we are dealing with 
systems where quantum theory should be applied? Experience shows that classical theory 
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is not far from the true description and, hence, these studies may be considered as a guide 
to what to expect when quantum theory is applied. 
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